| dc.contributor.author | Atencia Mondragon, Lelis Raquel | |
| dc.contributor.author | Huarcaya Carbajal, Melany Cristina | |
| dc.contributor.author | Guzmán Jiménez, Rosario Marybel | |
| dc.contributor.other | Guzmán Jiménez, Rosario Marybel | |
| dc.date.accessioned | 2024-07-05T16:43:38Z | |
| dc.date.available | 2024-07-05T16:43:38Z | |
| dc.date.issued | 2024 | |
| dc.identifier.citation | Atencia Mondragon, L. R., Huarcaya Carbajal, M. C., & Guzmán Jiménez, R. M. (2024). Exploring Stroke Risk Identification by Machine Learning: A Systematic Review. En Universidad de Lima (Ed.), Diseñando el presente y el futuro: Inteligencia artificial para el desarrollo sostenible. Actas del VI Congreso Internacional de Ingeniería de Sistemas 2023, (pp. 69-82). Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2023.7081 | es_PE |
| dc.identifier.uri | https://hdl.handle.net/20.500.12724/20835 | |
| dc.description.abstract | This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree. | en_EN |
| dc.format | application/html | |
| dc.language.iso | eng | |
| dc.publisher | Universidad de Lima | |
| dc.rights | info:eu-repo/semantics/openAccess | * |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
| dc.source | Repositorio Institucional - Ulima | |
| dc.source | Universidad de Lima | |
| dc.subject | Pendiente | es_PE |
| dc.title | Exploring Stroke Risk Identification by Machine Learning: A Systematic Review | en_EN |
| dc.type | info:eu-repo/semantics/conferenceObject | |
| dc.publisher.country | PE | |
| dc.type.other | Artículo de conferencia | |
| dc.identifier.isni | 0000000121541816 | |
| dc.contributor.student | Atencia Mondragon, Lelis Raquel (Ingeniería de Sistemas) | |
| dc.contributor.student | Huarcaya Carbajal, Melany Cristina (Ingeniería de Sistemas) | |
| dc.identifier.event | VI Congreso Internacional de Ingeniería de Sistemas | |
| dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | |
| dc.identifier.doi | https://doi.org/10.26439/ciis2023.7081 | |