Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
Resumen
This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree.
Cómo citar
Atencia Mondragon, L. R., Huarcaya Carbajal, M. C., & Guzmán Jiménez, R. M. (2024). Exploring Stroke Risk Identification by Machine Learning: A Systematic Review. En Universidad de Lima (Ed.), Diseñando el presente y el futuro: Inteligencia artificial para el desarrollo sostenible. Actas del VI Congreso Internacional de Ingeniería de Sistemas 2023, (pp. 69-82). Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2023.7081Editor
Universidad de LimaTemas
Coleccion(es)
El ítem tiene asociados los siguientes ficheros de licencia: