Mostrar el registro sencillo del ítem

dc.contributor.authorAtencia Mondragon, Lelis Raquel
dc.contributor.authorHuarcaya Carbajal, Melany Cristina
dc.contributor.authorGuzmán Jiménez, Rosario Marybel
dc.contributor.otherGuzmán Jiménez, Rosario Marybel
dc.date.accessioned2024-07-05T16:43:38Z
dc.date.available2024-07-05T16:43:38Z
dc.date.issued2024
dc.identifier.citationAtencia Mondragon, L. R., Huarcaya Carbajal, M. C., & Guzmán Jiménez, R. M. (2024). Exploring Stroke Risk Identification by Machine Learning: A Systematic Review. En Universidad de Lima (Ed.), Diseñando el presente y el futuro: Inteligencia artificial para el desarrollo sostenible. Actas del VI Congreso Internacional de Ingeniería de Sistemas 2023, (pp. 69-82). Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2023.7081es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/20835
dc.description.abstractThis work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherUniversidad de Lima
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectPendientees_PE
dc.titleExploring Stroke Risk Identification by Machine Learning: A Systematic Reviewen_EN
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.publisher.countryPE
dc.type.otherArtículo de conferencia
dc.identifier.isni0000000121541816
dc.contributor.studentAtencia Mondragon, Lelis Raquel (Ingeniería de Sistemas)
dc.contributor.studentHuarcaya Carbajal, Melany Cristina (Ingeniería de Sistemas)
dc.identifier.eventVI Congreso Internacional de Ingeniería de Sistemas
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.26439/ciis2023.7081


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess