• español
    • English
  • Políticas
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Repositorio Institucional ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería Civil
  • Ver ítem
  •   Repositorio Institucional ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería Civil
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Building Semantic Segmentation Using UNet Convolutional Network on SpaceNet Public Data Sets for Monitoring Surrounding Area of Chan Chan (Peru)

Thumbnail
Fecha
2024
Autor(es)
Chicchon, Miguel
Malinverni, Eva Savina
Sanità, Marcia
Pierdicca, Roberto
Colosi, Francisca
León Trujillo, Francisco James
Metadatos
Mostrar el registro completo del ítem
Resumen
The amount of damage to cultural heritage sites is increasing rapidly every year. This is due to inadequate heritage management and uncontrolled urban growth as well as unpredictable seismic and atmospheric events that manifest themselves in a continuously deteriorating ecosystem. Thus, applications of artificial intelligence (AI) in remote-sensing (RS) techniques (machine-learning and deep-learning algorithms) for monitoring archaeological sites have increased in recent years. This research involves the surrounding area of the archaeological site of Chan Chan in Peru in particular. An approach that is based on the use of AI algorithms for building footprint segmentation and change-detection analysis by means of RS images is proposed. It involves a UNet con-volutional network based on an EfficientNet B0 to B7 encoder. The network was trained on two public data sets from SpaceNet that were based on WV2 and WV3 satellite images: SpaceNet V1 (Rio), and SpaceNet V2 (Shanghai). In the pre-processing phase, the images from the two data sets have been equalized in order to improve their quality and avoid overfitting. The building segmentation has been performed on HRV images of the study area that were downloaded from Google Earth Pro. The value that was achieved in the IoU metric was around 70% in both experiments. The purpose of this proposed methodology is to assist scientists in drafting monitoring and conservation protocols based on already-recorded data in order to prevent future disasters and hazards. © 2024 Author(s).
URI
https://hdl.handle.net/20.500.12724/20932
DOI
https://doi.org/10.7494/geom.2024.18.3.25
Cómo citar
Chicchon, M., Malinverni, E. S., Sanità, M., Pierdicca, R., Colosi, F., & León Trujillo, F. J. (2024). Building Semantic Segmentation Using UNet Convolutional Network on SpaceNet Public Data Sets for Monitoring Surrounding Area of Chan Chan (Peru). Geomatics and Environmental Engineering. https://doi.org/10.7494/geom.2024.18.3.25
Editor
AGH University of Science and Technology Press
Temas
Computer vision
Image processing
Remote sensing
Geospatial data
Deep learning (Machine learning)
Geographic information systems
Geospatial data
Artificial intelligence
Algorithms
Photographic interpretation
Neural networks (Computer science)
Revista
Geomatics and Environmental Engineering
ISSN
18981135
Coleccion(es)
  • Ingeniería Civil [46]


Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documentoEsta colecciónPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documento

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software