Mostrar el registro sencillo del ítem

dc.contributor.authorChicchon, Miguel
dc.contributor.authorMalinverni, Eva Savina
dc.contributor.authorSanità, Marcia
dc.contributor.authorPierdicca, Roberto
dc.contributor.authorColosi, Francisca
dc.contributor.authorLeón Trujillo, Francisco James
dc.contributor.otherLeón Trujillo, Francisco James
dc.date.accessioned2024-08-09T13:14:34Z
dc.date.available2024-08-09T13:14:34Z
dc.date.issued2024
dc.identifier.citationChicchon, M., Malinverni, E. S., Sanità, M., Pierdicca, R., Colosi, F., & León Trujillo, F. J. (2024). Building Semantic Segmentation Using UNet Convolutional Network on SpaceNet Public Data Sets for Monitoring Surrounding Area of Chan Chan (Peru). Geomatics and Environmental Engineering. https://doi.org/10.7494/geom.2024.18.3.25es_PE
dc.identifier.issn18981135
dc.identifier.urihttps://hdl.handle.net/20.500.12724/20932
dc.description.abstractThe amount of damage to cultural heritage sites is increasing rapidly every year. This is due to inadequate heritage management and uncontrolled urban growth as well as unpredictable seismic and atmospheric events that manifest themselves in a continuously deteriorating ecosystem. Thus, applications of artificial intelligence (AI) in remote-sensing (RS) techniques (machine-learning and deep-learning algorithms) for monitoring archaeological sites have increased in recent years. This research involves the surrounding area of the archaeological site of Chan Chan in Peru in particular. An approach that is based on the use of AI algorithms for building footprint segmentation and change-detection analysis by means of RS images is proposed. It involves a UNet con-volutional network based on an EfficientNet B0 to B7 encoder. The network was trained on two public data sets from SpaceNet that were based on WV2 and WV3 satellite images: SpaceNet V1 (Rio), and SpaceNet V2 (Shanghai). In the pre-processing phase, the images from the two data sets have been equalized in order to improve their quality and avoid overfitting. The building segmentation has been performed on HRV images of the study area that were downloaded from Google Earth Pro. The value that was achieved in the IoU metric was around 70% in both experiments. The purpose of this proposed methodology is to assist scientists in drafting monitoring and conservation protocols based on already-recorded data in order to prevent future disasters and hazards. © 2024 Author(s).en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherAGH University of Science and Technology Press
dc.rights.uriPendiente*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectComputer visionen_EN
dc.subjectImage processingen_EN
dc.subjectRemote sensingen_EN
dc.subjectGeospatial dataen_EN
dc.subjectDeep learning (Machine learning)en_EN
dc.subjectGeographic information systemsen_EN
dc.subjectGeospatial dataen_EN
dc.subjectArtificial intelligenceen_EN
dc.subjectAlgorithmsen_EN
dc.subjectPhotographic interpretationen_EN
dc.subjectNeural networks (Computer science)en_EN
dc.titleBuilding Semantic Segmentation Using UNet Convolutional Network on SpaceNet Public Data Sets for Monitoring Surrounding Area of Chan Chan (Peru)en_EN
dc.typeinfo:eu-repo/semantics/article
dc.identifier.journalGeomatics and Environmental Engineering
dc.publisher.countryPL
dc.type.otherArtículo en Scopus
dc.identifier.isni0000000121541816
ulima.autor.carreraPendiente
ulima.autor.afiliacionPendiente
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.7494/geom.2024.18.3.25
ulima.lineadeinvestigacionPendientees_PE
ulima.catPendiente
dc.identifier.scopusid2-s2.0-85196914196


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem