Mostrar el registro sencillo del ítem

dc.contributor.authorBlanco-Victorio, Daniel José
dc.contributor.authorLópez-Ramos, Roxana Patricia
dc.contributor.authorBlanco-Rodríguez, Johan Daniel
dc.contributor.authorLópez-Luján, Nieves Asteria
dc.contributor.authorLeón-Untiveros, Gina Fiorella
dc.contributor.authorSiccha-Macassi, Ana Lucy
dc.date.accessioned2025-04-30T16:36:22Z
dc.date.available2025-04-30T16:36:22Z
dc.date.issued2024
dc.identifier.issn1989-5488
dc.identifier.urihttps://hdl.handle.net/20.500.12724/22564
dc.description.abstractBackground: To evaluate the performance of different prediction models based on machine learning to predict the presence of early childhood caries. Material and Methods: Cross-sectional analytical study. The sociodemographic and clinical data used came from a sample of 186 children aged 3 to 6 years and their respective parents or guardians treated at a Hospital in Ica, Peru. The database with significant variables was loaded into the Orange Data Mining software to be processed with different prediction models based on Machine Learning. To evaluate the performance of the prediction models, the following indicators were used: precision, recall, F1-score and accuracy. The discriminatory power of the model was determined by the value of the ROC curve. Results: 76.88% of the children evaluated had cavities. The Support Vector Machine (SVM) and Neural Network (NN) models obtained the best performance values, showing similar values of accuracy, F1-score and recall (0.927, 0.950 and 0.974; respectively). The probability of correctly distinguishing a child with ECC was 90.40% for the SVM model and 86.68% for the NN model. Conclusions: The Machine Learning-based caries prediction models with the best performance were Support Vector Machine (SVM) and Neural Networks (NN). © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989–5488
dc.formatapplication/html
dc.language.isoeng
dc.publisherMedicina Oral S.L.
dc.relation.ispartofurn:issn: 1989-5488
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectPendiente
dc.titleEarly childhood caries (ECC) prediction models using Machine Learningen_EN
dc.typeinfo:eu-repo/semantics/article
dc.identifier.journalJournal of Clinical and Experimental Dentistry
dc.type.otherArtículo en Scopus
dc.identifier.isni121541816
dc.contributor.studentBlanco Rodríguez, Johan Daniel (Ingeniería de Sistemas)
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.4317/jced.61514
dc.identifier.scopusid2-s2.0-85211179113


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem