• español
    • English
  • Políticas
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Repositorio Institucional ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería de Sistemas
  • Ver ítem
  •   Repositorio Institucional ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería de Sistemas
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Early childhood caries (ECC) prediction models using Machine Learning

Thumbnail
Fecha
2024
Autor(es)
Blanco-Victorio, Daniel José
López-Ramos, Roxana Patricia
Blanco-Rodríguez, Johan Daniel
López-Luján, Nieves Asteria
León-Untiveros, Gina Fiorella
Siccha-Macassi, Ana Lucy
Metadatos
Mostrar el registro completo del ítem
Resumen
Background: To evaluate the performance of different prediction models based on machine learning to predict the presence of early childhood caries. Material and Methods: Cross-sectional analytical study. The sociodemographic and clinical data used came from a sample of 186 children aged 3 to 6 years and their respective parents or guardians treated at a Hospital in Ica, Peru. The database with significant variables was loaded into the Orange Data Mining software to be processed with different prediction models based on Machine Learning. To evaluate the performance of the prediction models, the following indicators were used: precision, recall, F1-score and accuracy. The discriminatory power of the model was determined by the value of the ROC curve. Results: 76.88% of the children evaluated had cavities. The Support Vector Machine (SVM) and Neural Network (NN) models obtained the best performance values, showing similar values of accuracy, F1-score and recall (0.927, 0.950 and 0.974; respectively). The probability of correctly distinguishing a child with ECC was 90.40% for the SVM model and 86.68% for the NN model. Conclusions: The Machine Learning-based caries prediction models with the best performance were Support Vector Machine (SVM) and Neural Networks (NN). © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989–5488
URI
https://hdl.handle.net/20.500.12724/22564
DOI
https://doi.org/10.4317/jced.61514
Editor
Medicina Oral S.L.
Temas
Pendiente
Revista
Journal of Clinical and Experimental Dentistry
ISSN
1989-5488
Coleccion(es)
  • Ingeniería de Sistemas [56]


Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documentoEsta colecciónPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documento

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software