• español
    • English
  • Políticas
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Repositorio Institucional ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • Ver ítem
  •   Repositorio Institucional ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net

Thumbnail
Ver/
Descargar
(application/pdf: 49.99Kb)
Fecha
2020
Autor(es)
Chicchón Apaza, Miguel Ángel
Bedón Monzón, Héctor Manuel
Metadatos
Mostrar el registro completo del ítem
Resumen
A first step in the process of automating weed removal in precision agriculture is the semantic segmentation of crops, weeds and soil. Deep learning techniques based on convolutional neural networks are successfully applied today and one of the most popular network architectures in semantic segmentation problems is U-Net. In this article, the variants in the U-Net architecture were evaluated based on the aggregation of residual and recurring blocks to improve their performance. For training and testing, a set of data available on the Internet was used, consisting of 60 multispectral images with unbalanced pixels, so techniques were applied to increase and balance the data. Experimental results show a slight increase in quality metrics compared to the classic U-Net architecture.
URI
https://hdl.handle.net/20.500.12724/10812
DOI
https://doi-org.ezproxy.ulima.edu.pe/10.1007/978-3-030-42520-3_38
Cómo citar
Chicchon Azapa, M. & Bedón Monzón, H. (2020). Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net. Communications in Computer and Information Science. 473-485. https://link.springer.com/chapter/10.1007%2F978-3-030-42520-3_38
Editor
Springer
Temas
Automatización
Agricultura
Redes neuronales artificiales
Automation
Agriculture
Artificial neural networks
Evento
International Conference on Applied Technologies (ICAT)
Coleccion(es)
  • Ingeniería Industrial [182]


Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documentoEsta colecciónPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documento

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software