Mostrar el registro sencillo del ítem
Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning
dc.contributor.author | Chicchón Apaza, Miguel Ángel | |
dc.contributor.author | Bedón Monzón, Héctor Manuel | |
dc.contributor.other | Chicchón Apaza, Miguel Ángel | |
dc.contributor.other | Bedón Monzón, Héctor Manuel | |
dc.date.accessioned | 2023-02-16T14:42:35Z | |
dc.date.available | 2023-02-16T14:42:35Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Chicchon, M. & Bedon, H. (2022). Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning. En Y.-D Zhang, T. Senjyu, C. So-In & A. Joshi (Eds.), Smart Trends in Computing and Communications: Fifth International Conference, SmartCom 2021, Virtual, Online, April 15-16, 2021, Proceedings, Lecture Notes in Networks and Systems (vol. 286, pp. 301-309). Springer. https://doi.org/10.1007/978-981-16-4016-2_29 | es_PE |
dc.identifier.issn | 2367-3370 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12724/17607 | |
dc.description.abstract | The semantic segmentation approach is essential in automated scene analysis, but its application in underwater environments is still limited. Datasets generally have insufficient labeled data, unbalanced data classes, and different lighting conditions, making it difficult to obtain optimal results. Currently, deep convolutional neural networks allow very good results in machine vision tasks, and one of the network architectures with good performance in semantic segmentation is DeepLabv3 +. This paper evaluates the performance of DeepLabv3 + and transfer learning based on pre-trained backend networks in ImageNet to study underwater scenes. The experimentation is carried out on a dataset available on the Internet with labels of eight classes. Experimental results show that DeepLabv3 + and transfer learning are effective for semantic segmentation of multiple underwater scene objects with insufficient tagged data and unbalanced classes. | en_EN |
dc.format | application/html | |
dc.language.iso | eng | |
dc.publisher | Springer | es_PE |
dc.relation.ispartof | urn:issn: 23673370 | |
dc.relation.ispartof | urn:isbn:978-981164015-5 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | * |
dc.source | Repositorio Institucional - Ulima | es_PE |
dc.source | Universidad de Lima | es_PE |
dc.subject | Visión por computadora | es_PE |
dc.subject | Aprendizaje profundo | es_PE |
dc.subject | Computer vision | es_PE |
dc.subject | Deep learning | es_PE |
dc.title | Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning | en_EN |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.other | Artículo de conferencia en Scopus | |
ulima.areas.lineasdeinvestigacion | Productividad y empleo / Innovación: tecnologías y productos | es_PE |
dc.publisher.country | SG | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.11.04 | |
dc.identifier.doi | https://doi.org/10.1007/978-981-16-4016-2_29 | |
ulima.cat | 9 | |
ulima.autor.afiliacion | Chicchón Apaza, Miguel Ángel (Exponential Technology Group (GITX-ULIMA), Institute of Scientific Research (IDIC), Universidad de Lima) (Scopus) | es_PE |
ulima.autor.afiliacion | Bedón Monzón, Héctor Manuel (Exponential Technology Group (GITX-ULIMA), Institute of Scientific Research (IDIC), Universidad de Lima) (Scopus) | es_PE |
ulima.autor.carrera | Chicchón Apaza, Miguel Ángel (No figura en la lista del año 2021) | es_PE |
ulima.autor.carrera | Bedón Monzón, Héctor Manuel (Ingeniería Industrial) | es_PE |
dc.identifier.scopusid | 2-s2.0-85118997690 | |
dc.identifier.event | Lecture Notes in Networks and Systems |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ingeniería Industrial [135]
-
Investigadores externos [4]