• español
    • English
  • Politics
  • English 
    • español
    • English
  • Login
View Item 
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • View Item
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning

Thumbnail
Date
2022
Author(s)
Chicchón Apaza, Miguel Ángel
Bedón Monzón, Héctor Manuel
Metadata
Show full item record
Abstract
The semantic segmentation approach is essential in automated scene analysis, but its application in underwater environments is still limited. Datasets generally have insufficient labeled data, unbalanced data classes, and different lighting conditions, making it difficult to obtain optimal results. Currently, deep convolutional neural networks allow very good results in machine vision tasks, and one of the network architectures with good performance in semantic segmentation is DeepLabv3 +. This paper evaluates the performance of DeepLabv3 + and transfer learning based on pre-trained backend networks in ImageNet to study underwater scenes. The experimentation is carried out on a dataset available on the Internet with labels of eight classes. Experimental results show that DeepLabv3 + and transfer learning are effective for semantic segmentation of multiple underwater scene objects with insufficient tagged data and unbalanced classes.
URI
https://hdl.handle.net/20.500.12724/17607
DOI
https://doi.org/10.1007/978-981-16-4016-2_29
How to cite
Chicchon, M. & Bedon, H. (2022). Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning. En Y.-D Zhang, T. Senjyu, C. So-In & A. Joshi (Eds.), Smart Trends in Computing and Communications: Fifth International Conference, SmartCom 2021, Virtual, Online, April 15-16, 2021, Proceedings, Lecture Notes in Networks and Systems (vol. 286, pp. 301-309). Springer. https://doi.org/10.1007/978-981-16-4016-2_29
Publisher
Springer
Subject
Visión por computadora
Aprendizaje profundo
Computer vision
Deep learning
ISSN
2367-3370
Event
Lecture Notes in Networks and Systems
Collections
  • Ingeniería Industrial [182]
  • Investigadores externos [4]


Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument typeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument type

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software