• español
    • English
  • Políticas
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Repositorio Institucional ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • Ver ítem
  •   Repositorio Institucional ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning

Thumbnail
Fecha
2022
Autor(es)
Chicchón Apaza, Miguel Ángel
Bedón Monzón, Héctor Manuel
Metadatos
Mostrar el registro completo del ítem
Resumen
The semantic segmentation approach is essential in automated scene analysis, but its application in underwater environments is still limited. Datasets generally have insufficient labeled data, unbalanced data classes, and different lighting conditions, making it difficult to obtain optimal results. Currently, deep convolutional neural networks allow very good results in machine vision tasks, and one of the network architectures with good performance in semantic segmentation is DeepLabv3 +. This paper evaluates the performance of DeepLabv3 + and transfer learning based on pre-trained backend networks in ImageNet to study underwater scenes. The experimentation is carried out on a dataset available on the Internet with labels of eight classes. Experimental results show that DeepLabv3 + and transfer learning are effective for semantic segmentation of multiple underwater scene objects with insufficient tagged data and unbalanced classes.
URI
https://hdl.handle.net/20.500.12724/17607
DOI
https://doi.org/10.1007/978-981-16-4016-2_29
Cómo citar
Chicchon, M. & Bedon, H. (2022). Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning. En Y.-D Zhang, T. Senjyu, C. So-In & A. Joshi (Eds.), Smart Trends in Computing and Communications: Fifth International Conference, SmartCom 2021, Virtual, Online, April 15-16, 2021, Proceedings, Lecture Notes in Networks and Systems (vol. 286, pp. 301-309). Springer. https://doi.org/10.1007/978-981-16-4016-2_29
Editor
Springer
Temas
Visión por computadora
Aprendizaje profundo
Computer vision
Deep learning
ISSN
2367-3370
Evento
Lecture Notes in Networks and Systems
Coleccion(es)
  • Ingeniería Industrial [182]
  • Investigadores externos [4]


Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documentoEsta colecciónPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documento

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software