• español
    • English
  • Políticas
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Repositorio Institucional ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería de Sistemas
  • Ver ítem
  •   Repositorio Institucional ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería de Sistemas
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Profit scoring for credit unions using the multilayer perceptron, XGBoost and TabNet algorithms: Evidence from Peru

Thumbnail
Fecha
2023
Autor(es)
Asencios Casimiro, Rodrigo Andre
Asencios, Christian
Ramos Ponce, Oscar Efrain
Metadatos
Mostrar el registro completo del ítem
Resumen
Credit unions are growing microfinance institutions that base their lending decisions on the judgment of their credit analysts. Therefore, the purpose of this paper is to design 6 profit scoring models, capable of predicting the Internal Rate of Return (IRR) of credit applications, using the multilayer perceptron, XGBoost and TabNet algorithms and thus serve as a support tool for the credit analyst. For this purpose, the least correlated and most independent features were selected from the dataset coming from a Peruvian credit union and composed of 36 402 observations. Then, the hyperparameters of all algorithms were tuned. Finally, the profit scoring models that considered only the selected features were compared to which considered all features. As results, it was obtained that the most significant features that determine the IRR of a loan are the effective monthly interest rate and the member’s maximum or average days delinquent. The results obtained from the performance evaluation of the profit scoring models suggested the XGBoost as the best algorithm. In addition, the model that used the XGBoost algorithm and considered all the features had the best performance.
URI
https://hdl.handle.net/20.500.12724/17928
DOI
https://doi.org/10.1016/j.eswa.2022.119201
Cómo citar
Asencios, R., Asencios, C. & Gutiérrez-Cárdenas, J. (2023). Profit scoring for credit unions using the multilayer perceptron, XGBoost and TabNet algorithms: Evidence from Peru. Communications in Computer and Information Science, 213. https://doi.org/10.1016/j.eswa.2022.119201
Editor
Elsevier
Temas
Credit unions
Credit analysis
Algorithms
Cooperativas de crédito
Análisis del crédito
Algoritmos
Perú
Revista
Expert Systems with Applications
ISSN
0957-4174
Coleccion(es)
  • Ingeniería de Sistemas [56]


Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documentoEsta colecciónPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documento

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software