Predicción de postulantes que cometerán fraude interno en una compañía con algoritmos de aprendizaje supervisado
Resumen
El fraude interno es un gran problema para las empresas, ocasionando pérdidas monetarias importantes. Diversas investigaciones han propuesto mejoras al proceso de selección de personal utilizando minería de datos. El pre¬sente trabajo propone utilizar la información histórica de postulantes a una empresa para predecir si cometerán fraude durante su estadía. Existen modelos con un nivel de precisión alto, pero que tienen un error de clasificación mayor para encontrar los casos de fraude. Después de diversas experimentaciones, se identifican alrededor de 7 características de este universo que aportan más al modelo. Algunas de estas variables coinciden con variables mencionadas en la literatura encontrada sobre trastornos antisociales. El algoritmo con mejores resultados es una red neuronal convolucional con 80 % de precisión. Se concluye que hay valor en la información de postulantes para determinar si cometerán fraude interno durante su estadía en la empresa
Cómo citar
Espinoza-Montalvo, S. (2019). Predicción de postulantes que cometerán fraude interno en una compañía con algoritmos de aprendizaje supervisado. Interfases, (012), 49-60. Recuperado de https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637/4617Editor
Universidad de Lima, Carrera de Ingeniería de SistemasTemas
Recurso(s) relacionado(s)
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637/4617Revista
InterfasesISSN
1993-4912Nota
Indexado en Latindex (Catálogo 2.0) Revista indexada en Latindex - Catálogo 2.0
Coleccion(es)
El ítem tiene asociados los siguientes ficheros de licencia: