• español
    • English
  • Politics
  • English 
    • español
    • English
  • Login
View Item 
  •   Institutional Repository ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería de Sistemas
  • View Item
  •   Institutional Repository ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Ingeniería de Sistemas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Breast Cancer Classification Through Transfer Learning with Vision Transformer, PCA, and Machine Learning Models

Thumbnail
Date
2024
Author(s)
Gutiérrez Cárdenas, Juan Manuel
Metadata
Show full item record
Abstract
Breast cancer is a leading cause of death among women worldwide, making early detection crucial for saving lives and preventing the spread of the disease. Deep Learning and Machine Learning techniques, coupled with the availability of diverse breast cancer datasets, have proven to be effective in assisting healthcare practitioners worldwide. Recent advancements in image classification models, such as Vision Transformers and pretrained models, offer promising avenues for breast cancer imaging classification research. In this study, we employ a pretrained Vision Transformer (ViT) model, specifically trained on the ImageNet dataset, as a feature extractor. We combine this with Principal Component Analysis (PCA) for dimensionality reduction and evaluate two classifiers, namely a Multilayer Perceptron (MLP) and a Support Vector Machine (SVM), for breast mammogram image classification. The results demonstrate that the transfer learning approach using ViT, PCA, and an MLP classifier achieves an average accuracy, precision, recall, and F1-score of 98% for the DSMM dataset and 95% for the INbreast dataset, considering the same metrics which are comparable to the current state-of-the-art. © (2024), (Science and Information Organization). All Rights Reserved.
URI
https://hdl.handle.net/20.500.12724/20915
DOI
https://doi.org/10.14569/IJACSA.2024.01504104
How to cite
Gutiérrez Cárdenas, J. M. (2024). Breast Cancer Classification Through Transfer Learning with Vision Transformer, PCA, and Machine Learning Models. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2024.01504104
Publisher
Science and Information Organization
Subject
Pendiente
Journal
International Journal of Advanced Computer Science and Applications
ISSN
2158107X
Collections
  • Ingeniería de Sistemas [56]


Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument typeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument type

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software